Программирование логических контроллеров для чайников. ПЛК — что это такое? Мягкая система реального времени(softPLC)

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Как и было описано, в первой статье, ПЛК осуществляет циклическое чтение входов, выполнение прикладной программы и запись выходов. Потому написание программы для ПЛК отличается от традиционного написания программы для микроконтроллеров и ПК. К программам для ПЛК предъявляются жесткие требования по надежности, одно дело зависает текстовый редактор, а другое дело программа, управляющая ядерным реактором. Другое не менее важное требование – это своевременное реагирование на событие. А что значит, во время не прореагировать на событие в промышленности? Это значит потерять контроль над технологическим процессом. Что в некоторых случаях, примером с реактором, приведет к непоправимым последствиям.

Рассмотрим отличия написания программы для ПЛК и микроконтроллера. Для примера возьмем простейшую задачку для МК - мигающий светодиод. Подозреваю, что все начинали знакомство с МК именно с этой задачи. Алгоритм будет следующим

  1. Записать в порт лог. 1.
  2. Временная задержка
  3. Записать в порт лог.0.
  4. Временная задержка
  5. Переход по метке на начало программы.

По данному алгоритму программа на ПЛК работать не будет, она содержит бесконечный цикл. А в ПЛК вся прикладная программа выполняется от начала до конца в каждом рабочем цикле, и любая программа должна отдавать управление системной программе. Поэтому при такой организации алгоритма наш ПЛК зависнет. Даже если и убрать, переход по метке на начало, программа не будет работать, так как нам хочется. Порт всегда будет в состоянии лог.0, так как физическая установка выходов производиться только после выполнения всей прикладной программы. И поэтому промежуточные состояния это всего лишь программные переменные в памяти, и на аппаратной части она ни как не отображаются.

В дополнение задержку времени тоже хорошо бы организовать с помощью таймера, периодически проверяя его значение, а не ожидать в пустую пока это время пройдет, наверняка для контроллера найдется другая более важная работа.

С учетом выше сказанного, правильный алгоритм будет выглядеть следующим образом:
1. Проверить таймер, если время паузы вышло, то
а) инвертировать выход
б) начать новый отсчет
2. Конец программы

Реализуем данный алгоритм на практике ниже, а теперь рассмотрим основные особенности LAD (Ladder Diagram) языка.

Релейная схема представляет собой две вертикальные шины, между ними расположены горизонтальные цепи образованные контактами и обмотками реле. Пример на рисунке:

Нормально разомкнутый контакт

Нормально замкнутый(инверсный) контакт

Обмотка реле

Количество контактов цепи может быть разным, а обмотка одна.

Любому контакту ставится в соответствие логическая переменная, определяющая его состояние. Если нормально замкнутый контакт замкнут, то ИСТИНА, если размокнут – Ложь, для инверсного наоборот, он замкнут когда переменная имеет значение ЛОЖЬ. Имя переменной пишется над контактом и служит его названием.

Последовательно соединенные контакты равносильны логической операции И, а параллельно-монтажное ИЛИ. Инверсный контакт равносилен операции НЕ. Параллельное соединение обмоток допускается, а последовательное нет. Обмотка реле также может быть инверсной, тогда она копирует в соответствующую логическую переменную инверсное состояние цепи.

Идея релейных схем, такова, что все цепи работают параллельно, т.е. ток во все цепи подается одновременно. Но мы знаем, что программу процессор выполняет последовательно, и мы не можем это сделать одновременно. Так и в LAD программа выполняется последовательно слева направо, сверху вниз. Но цикл процессора мал, поэтому и получается эффект параллельности.

Любая переменная в рамках одной цепи имеет одно и то же значение. Если даже реле в цепи изменит переменную, то новое значение поступит на контакты только в следующем цикле. Цепи расположенные выше получают новое значение переменной сразу, а цепи расположенные ниже – только в следующем цикле. Строгий порядок выполнения очень важен, и благодаря ним LAD- диаграмма сохраняет устойчивость при наличии обратных связей.

Хоть это и противоречит аналогии LAD с релейными схемами, порядок выполнения LAD- программы можно нарушить с помощью меток и переходов. Это ухудшает читаемость программе, и в них бывает сложно разобраться, но как говориться если очень хочется, то можно. Для этого желательно разбить программу на модули, и делать переходы между модулями.

Возможности LAD программы можно расширить, вставляя функциональные блоки. Вставлять можно все стандартные функциональные блоки, которые содержаться в МЭК. Описание для функциональных блоков можно найти в справке.

Давайте составим нашу первую программу на LAD в среде CoDeSys. , достаточно воспользоваться поисковиком

После установки, выбираем создать новый проект, и CoDeSys попросит выбрать целевую платформу для ПЛК. Указание целевой платформы необходимо, чтобы среда знала, для какого типа контроллера пишется программа. Выбираем 3S CodeSyS Sp PLCWinNT V2.4 и жмем OK.

Имя проекта оставляем по умолчанию, язык выбираем LD

Интерфейс программы на русском языке, и интуитивно понятен. При наведении на элемент всплывает имя. Советую рассмотреть все элементы, а также пункты главного меню.

Для добавления элемента в программу необходимо левой кнопкой мыши кликнуть в рабочее поле программы и потом ЛКМ кликнуть на элемент, который вы хотите поместить в программу. Например, нормально разомкнутый контакт, у вас должно получиться следующее.

Вместо вопросительных знаков пишем имя нашей переменной, например SB, и нажимаем Enter, выходит окно объявление переменной, выбираем Bool и нажимаем OК.

Рассмотрите, какие типы можно выбрать, а также какие классы переменных.

Давайте, реализуем программы для мигания светодиодом, а если говорить в общем, то программа для генератора одиночных импульсов

Для реализации программы используем функциональные блок таймер TP. Таймер TP – этой таймер одиночного импульса с заданной по входу PT длительностью.

Пока IN равен FALSE, выход Q = FALSE, выход ET = 0. При переходе IN в TRUE выход Q устанавливается в TRUE и таймер начинает отсчет времени на выходе ET до достижения длительности, заданной PT. Далее счетчик не увеличивается. Таким образом, выход Q генерирует импульс длительностью PT по фронту входа IN.

Для вставки TP, на панели элементов выбираем:

И у нас всплывает ассистент выбора функционального блока.

Скачайте файл проекта, и давайте рассмотрим как он работает.

В начальный момент X= False , поэтому инверсный контакт X замкнут и таймер T2 запущен, выход Q= True, поэтому цепь включена. А так как обмотка в цепи инверсная, значит она копирует инверсное состояние цепи в X , и X остается False, после переполнения таймера Q = False , и инверсная обмотка переводит X в True. После этого запускается T1, после переполнения скидывает X в False и все повторяется. Переменная X является выходом генератора. Таймер T2 устанавливает паузу, а T1 длительность импульса.

Компилируем проект Проект -> Компилировать

В пункте онлайн выбираем Режим эмуляции , а затем Подключение и Старт . И видим, наша схема начинает переключаться, цепь где «протекает ток» выделяется синим цветом. Также в области объявления переменных видим текущее значение переменных.

Выход генератора можно поглядеть с помощью цифрового трассировщика, для этого переходим на вкладку Ресурсы в нижнем левом углу

Выбираем Цифровой трассировщик -> Дополнение -> Настройка трассировки , выйдет следующее окно

Цикличность записи поставим Вручную , нажимаем на менеджер и выбираем переменные X(Bool)

Нажимаем Ok . Выбираем перо для нашей переменной

Выбираем в онлайн Подключение, нажимаем Старт, далее Дополнительно -> Начать трассировку, также выберите пункт Автоматическая трассировка

Рассмотрим еще один пример управление двигателем с электронной коммутацией обмоток статора
Саму программу представлять не буду, скачайте проект. А об алгоритме работы расскажу.

Все таймеры запускаются по сигналу старт. Каждый таймер отмеряет момент окончания фазы. Переменные Y1-Y3 являются выводами соответствующей фазы управления. Каждый выход включается в том случае, если таймер еще не переполнен и выключен предыдущий выход. Последняя цепь, является цепью автоматического перезапуска.

У ПЛК есть несколько основных языков программирования. Во-первых, это что-то похожее на языки программирования высокого уровня. Называется язык структурированного текста (по-буржуйски ST). Исключительно удобная штука, если есть навыки программирования. Собственно, для программистов и придумана. Однако когда ПЛК разрабатывался и внедрялся, профессия программиста (в смысле толкового программиста с хорошей технической подготовкой) была еще более дефицитной, чем в наши суровые времена. Посему практичные янки и весь мир следом разработали несколько видов графических языков. Для электриков создали язык релейных диаграмм (по-буржуйски LD). Ничего в общем сложного – шина входов, шина выходов, между ними – схема из релюшек, нормально замкнутых или разомкнутых, ну и таймеров, конечно, триггеров всяких. Плюс в простоте – была бы схема, а программа напишется. Минус в трудностях работы с аналоговыми сигналами.

Другой вид графических языков – язык функциональных блоков (по-буржуйски FBD). Мне он очень напоминает работу, например, с пакетом Simulink программного комплекса Matlab, товарищу напротив — Vissim. Да, в общем, получить техническое образование ни разу не столкнувшись с такого рода ПО трудно. Основа всего — блоки, соединенные в нужной последовательности линиями связи. Если вы – технарь, пожалуй, наиболее прост для освоения и активного использования. Плюс – наглядность, интуитивная понятность реализуемых алгоритмов. Минусы – работа с циклами. Можно, конечно, но на ST такого рода программки и пишутся легче и короче.
Последний вариант графического языка – алгоритмический (SFC). Это наиболее высокий по уровню графический язык. Каждый его шаг – маленькая (или большая) программа. Очень красивый язык, справедливо обожаемый технологами всех мастей. Позволяет создавать жестко структурированные, удобные для отладки проекты. Минус всего один – браться за его изучение стоит, лишь в достаточной степени освоив язык ST, LD или FBD. Программы для отдельного шага все равно писать на них.

Ах, да. Чуть не забыл. Есть еще что-то похожее на ассемблер. Называется списком инструкций (по-буржуйски IL). Если вы фанат бесконечной работы с аккумулятором – это для вас. Минусы – длинный программный код, хорошо смотрящийся только в приложениях к диссертации, проблемы отладки. Короче в моем понимании – пятое колесо в телеге программирования ПЛК. Могу быть не прав.

Программа или проект?

Давайте сразу отделим котлеты от мух. Тот код, который мы героически пишем – это конечно программа. Вернее, более точно, программа – это код определяющий цикл работы ПЛК. Их у контроллера может быть не одна, не две, а много. Меняться они могут по времени, внешнему или программному событию. То есть программа – вещь достаточно частная. Совокупность же того, что «залито» в контроллер, принято называть проект. Помимо набора программ проект включает в себя подключенные библиотеки, типы данных, визуализации, конфигурации, настройки конкретного ПЛК и многое другое.

15 09.2016

Перед тем, как программировать ПЛК в среде разработки CoDeSyS 2.3 новички часто задаются вопросом: А какие системы требуется установить для корректной работы с аппаратом?? А как конфигурировать входы и выходы контроллера?? А каким образом связать устройство с ПК?? И снова, а как, а как?? Все мы с вами понимаем, устройства сложные и алгоритмы объёмные, и на изучение потребуется время. Я вот думаю, может написать небольшую книжку и назвать codesys для чайников? А вы согласны?

Из этой статьи вы узнаете:

Здравствуйте уважаемые коллеги и гости. Пишет вам автор блога сайт, Гридин Семён, и в этой статье я вам расскажу, как правильно программировать контроллер. Тема достаточно актуальная, я надеюсь после прочтения статьи, некоторые вопросы отпадут самим собой. =)

Как работает ПЛК?

ПЛК(программируемый логический контроллер) — это устройства полностью автоматизирующие работу аппаратов, различных агрегатов и станков. Фактически, это некий блок, который содержит входы и выходы, для подключения датчиков и исполнительных органов. Внутри прописывается логика.

Вычисления в устройстве выполняются циклически. То есть одни и те же действия выполнения программы выполняются в короткий промежуток времени.

В один цикл осуществляемый прибором выполняются следующие операции:

  1. Начало цикла;
  2. Чтение состояния входа;
  3. Выполнение кода пользователя;
  4. Запись состояния выходов;
  5. Обслуживание аппаратных ресурсов;
  6. Монитор системы исполнения;
  7. Контроль времени цикла;
  8. Переход на начало цикла;

Не буду больше разглагольствовать по теории. Давайте сразу перейдём к практике.

Из чего состоит программный комплекс для полноценной работы с ПЛК

Конечно вам поначалу покажется, что слишком много нужно знать, чтобы связать друг с другом основное приложение и утилитки, а потом соединить устройство. Я хочу вам сказать, что ничего сложного в процессе установки и связей — нет. В этом поможет моя статья.

Для начала нам нужно установить основной дистрибутив CoDeSyS 2.3 c официального сайта ОВЕН . А, я предлагаю во многих постах, касающихся программирования, использовать устройство ОВЕН ПЛК63 . Так как это универсальное устройство с экраном. У него на борту есть и дискретные входы, и аналоговые входы, и релейные выходы.

Итак, скачиваем программу:

Затем следует стандартная процедура установки. Указываем путь и все время жмём “Далее”, “Далее”.

Следующим этапом будет установка таргетов для плк. Таргет — это некое описание о конфигурации ПЛК. Инструкция подсказывает CoDeSyS 2.3, какое количество и какие входы/выходы имеет устройство.
Скачиваем также с сайта ОВЕН . Рекомендую установить все таргеты, которые там есть. Чтобы потом не искать и не думать об этом, если придется писать алгоритм на другой ПЛК.

Запускаем автоматический установщик, устанавливаем инструкции. Всё, половину пути мы с вами уже сделали в этой работе! После этих всех процедур можно устанавливать библиотеки, но о них позже. Переходим к следующему пункту.

Рабочее окно программы

Дистрибутив мы с вами установили, таргеты тоже. Давайте мы с вами рассмотрим рабочее окно среды разработки, элементы меню и основные вкладки.

Основное поле на рисунке выше делится на три области:

  1. Редактор переменных и их типов;
  2. Дерево объектов;
  3. Редактор основного алгоритма программы;

Редактор переменных — здесь мы с вами вводим переменные и присваиваем им типы данных. Для тех, кто не знает, переменная — это имя, к которому будет обращаться программа и возвращать результат. А тип данных определяет род информации, диапазон представления чисел и множество других операций.

Дерево объектов — в этом окне располагаются такие объекты, как функции, функциональные блоки, подпрограммы, конфигурация ПЛК, библиотеки. Об этом я расскажу позже.

Редактор программы — тут мы с вами описываем основной алгоритм программы работы контроллера. Пишется на любом языке стандарта МЭК. Более подробно, можете статью .

Простой пример на ST

Для удобства восприятия информации я постарался структурировать. Поэтапно расписал последовательность действий. Если возникнут вопросы или пожелания, обязательно пишите в комментариях.

Изначально я размещу в статье код на языке ST. Логика работы заключается в следующем: на дискретный вход прибора подаётся сигнал и через задержку времени включается выход. В принципе задача простая, и мы с вами её решим.

Код codesys2.3

PROGRAM PLC_PRG VAR T1:TON; ("таймер") Timer_Ust:WORD:=5; ("уставка таймера") Time_tekuch:TIME; ("текущее время") END_VAR T1(IN:=Start , PT:=DWORD_TO_TIME(Timer_Ust*1000)); Time_tekuch:=T1.ET; IF T1.Q THEN Out:= 1; ELSE Out:=0; END_IF;

PROGRAM PLC_PRG

T1 : TON ; ("таймер" )

Timer_Ust : WORD : = 5 ; ("уставка таймера" )

Time_tekuch : TIME ; ("текущее время" )

END_VAR

T1 (IN : = Start , PT : = DWORD_TO_TIME (Timer_Ust * 1000 ) ) ;

Time_tekuch : = T1 . ET ;

IF T1 . Q THEN Out : = 1 ; ELSE Out : = 0 ;

END_IF ;

Запускаем наш дистрибутив, создаём новый проект, указываем нужный нам таргет. Не забудьте предварительно проверить, что у вас установлены драйвера на преобразователь USB-COM, он нам понадобится для связи.

В листинге присутствуют две глобальные переменные Start и Out. Они связаны с физическими входами и выходами. Настройки все мы осуществляем во вкладке конфигурация ПЛК.

Компилируем проект (проверяем его на актуальность кода, чтобы не было ошибок). Можно нажать кнопку F11.

Вводим нужные настройки связи, как на картинке.

Собираем нашу схему логического программируемого контроллера. Подключаем интерфейс RS-232 с одной стороны и USB с другой. Жмём “подключение”. Ощущаем радость от процесса. =)) Если произошла ошибка связи , то проверьте ещё раз все подключения и параметры. Часто бывает, что провод преобразователя оборван.

Весь процесс я записал на видео, если будет что-то непонятно.

В следующей статье я напишу о , не пропустите. Будет интересно.

Успешных вам внедрений, дорогие читатели и гости. Если понравилась статья, подписывайтесь на новости блога и расскажите друзьям. А на каком языке и оборудовании вы предпочитаете строить систему автоматизации?

С уважением, Гридин Семён.

Итак, вы решили изучать программирование ПЛК (Программируемых Логических Контроллеров). С чего стоит начать изучение программирования контроллеров? Какие учебные материалы искать, стоит ли заниматься этим самостоятельно или лучше пойти на курсы, сколько времени займёт обучение и насколько оно будет сложным? Доступно ли программирование ПЛК всем или для этого нужно быть программистом? Как быстро стоит переходить от теории к практике? Мы подготовили ответы на эти и другие вопросы.

1. Для того чтобы начать изучать программирование ПЛК, быть программистом вовсе не обязательно. Достаточно иметь так называемый логический склад ума. Если вы любили математику и информатику в школе - скорее всего, у вас всё получится.
2. Однако определённые навыки и понимание машинной логики все же необходимы. Если вы изучали в школе или институте основы программирование на Паскале, Бейсике или Ассемблере - это значительный плюс.
3. Первые шаги в программировании ПЛК можно и даже лучше всего делать самостоятельно, это позволит изучить основы в комфортном для себя темпе. Учебных материалов о ПЛК и их программировании достаточно много в интернете, а приблизительный план для самостоятельного обучения вы можете найти в этой статье.
4. А вот сразу после изучения основ следует обратить своё внимание на профессиональные курсы и руководства. От своего имени особо рекомендуем видеокурс по Simatic Step 7, который можно купить на сайте http://step7-kurs.ru. Этот курс как нельзя лучше подходит для новичков, в то же время Simatic Step 7 используется для разработки систем автоматизации для ПЛК Simatic - одних из самых популярных и востребованных на сегодня контроллеров.
5. После того как вы сделаете свои первые шаги step 7 - милости просим на специализированные форумы: здесь вы сможете не только «задачки порешать», но и уже начинать подыскивать работу или стажировку.
6. Время, необходимое для изучения программирования ПЛК, - параметр индивидуальный. Однако в любом случае это займёт у вас гораздо меньше времени, чем попытки освоить Java или C#.

Темы, которые стоит изучить самостоятельно до того, как вы приступите к изучению профессиональных курсов (т. е. на этапе самообучения):

1. Требования техники безопасности при работе с ПЛК . Хотя в начале обучения вам, возможно, будет казаться, что эта тема вам не нужна - все же потратьте некоторое время и изучите ТБ работы с ПЛК. Пригодится обязательно.
2. Назначение, функции, принципы работы и конструкция ПЛК . Условия, в которых работают ПЛК и требования к ним. Если вы раньше занимались радиотехническим конструированием - эта тема не составит для вас особого труда.
3. История ПЛК . Необязательная, но весьма интересная часть.
4. Знакомство с основными языками программирования ПЛК согласно стандарту МЭК-61131-3: Sequential Function Chart (SFC), Function Block Diagram (FBD), Ladder Diagrams (LАD), Statement List (STL), Instruction List (IL).
5. Знакомство со средой разработки , лучше всего - с двумя-тремя наиболее популярными. Например, это могут быть CoDeSys и Simatic Step 7.
6. Изучение методики программирования ПЛК . Структуризация программы, вызов подпрограмм, задание циклов и времени работы программы.
7. Основные команды (операторы) . К этому моменту вы уже должны были определиться с языком программирования и средой разработки, наиболее симпатичной лично вам.
8. Функции и функциональные блоки .
9.Примеры кода работающих программ.
10. Практикум . При написании собственных программ переходите от элементарных задач к более сложным. На этом этапе нет ничего плохого в том, чтобы использоваться в своих программах части чужого кода, однако старайтесь со временем уменьшать их количество (в процентном выражении).

Программируемые логические контроллеры (ПЛК)

До появления твердотельных логических схем разработка систем логического управления основывались на электромеханических реле. По сей день реле не устарели в своем предназначении, но все же в некоторых своих прежних функциях они заменены контроллером.

В современной промышленности существует большое количество различных систем и процессов, требующих автоматизации, но теперь такие системы редко проектируются из реле. Современные производственные процессы нуждаются в устройстве, которое запрограммировано на выполнение различных логических функций. В конце 1960-х годов американская компания «Bedford Associates» разработала компьютерное устройство, названное MODICON (Modular Digital Controller). Позже название устройства стало названием подразделения компании, спроектировавшей, сделавшей и продавшей его.

Другие компании разработали собственные версии этого устройства, и, в конце концов, оно стало известно как ПЛК, или программируемый логический контроллер . Целью программируемого контроллера, способного имитировать работу большого количества реле, была замена электромеханических реле на .

ПЛК имеет набор входных клемм, с помощью которых можно контролировать состояние датчиков и выключателей. Также имеются выходные клеммы, которые сообщают «высокий» или «низкий» сигнал индикаторам питания, электромагнитным клапанам, контакторам, небольшим двигателям и другим самоконтролируемым устройствам.

ПЛК легки в программировании, так как их программный язык напоминает логику работы реле. Так обычный промышленный электрик или инженер-электрик, привыкший читать схемы релейной логики, будет чувствовать себя комфортно и при программировании ПЛК на выполнение тех же функций.

Подключение сигналов и стандартное программирование несколько отличаются у разных моделей ПЛК, но они достаточно схожи, что позволяет разместить здесь «общее» введение в программирование этого устройства.

Следующая иллюстрация показывает простой ПЛК, а точнее то, как он может выглядеть спереди. Две винтовые клеммы, обеспечивающие подключение для внутренних цепей ПЛК напряженим до 120 В переменного тока, помечены L1 и L2.

Шесть винтовых клемм, расположенных с левой стороны, обеспечивают подключение для входных устройств. Каждая клемма представляет свой входной канал (Х). Винтовая клемма («общее» подключение) расположенная в левом нижнем углу обычно подключается к L2 (нейтральная) источника тока напряжением 120 В переменного тока.

Внутри корпуса ПЛК, связывающего каждую входную клемму с общей клеммой, находится оптоизолятор устройства (светодиод), который обеспечивает электрически изолированный «высокий» сигнал для схемы компьютера (фототранзистор интерпретирует свет светодиода), когда 120-тивольтный переменный ток устанавливается между соответствующей входной клеммой и общей клеммой. Светодиод на передней панели ПЛК дает возможность понять, какой вход находится под напряжением:

Выходные сигналы генерируются компьютерной схемотехникой ПЛК, активируя переключающее устройство (транзистор, тиристор или даже электромеханическое реле) и связывая клемму «Источник» (правый нижний угол) с любым помеченным буквой Y выходом. Клемма «Источник» обычно связывается с L1. Так же, как и каждый вход, каждый выход, находящий под напряжением, отмечается с помощью светодиода:

Таким образом, ПЛК может подключаться к любым устройствам, таким как переключатели и электромагниты.

Основы программирования ПЛК

Современная логика системы управления установлена в ПЛК посредством компьютерной программы. Эта программа определяет, какие выходы находятся под напряжением и при каких входных условиях. Хотя сама программа напоминают схему логики реле, в ней не существует никаких контактов переключателя или катушек реле, действующих внутри ПЛК для создания связей между входом и выходом. Эти контакты и катушки мнимые. Программа пишется и просматривается с помощью персонального компьютера, подключенного к порту программирования ПЛК.

Рассмотрим следующую схему и программу ПЛК:

Когда кнопочный переключатель не задействован (находится в не нажатом состоянии), сигнал не посылается на вход Х1. В соответствие с программой, которая показывает «открытый» вход Х1, сигнал не будет посылаться и на выход Y1. Таким образом, выход Y1 останется обесточенным, а индикатор, подключенный к нему, погасшим.

Если кнопочный переключатель нажат, сигнал будет отправлен к входу Х1. Все контакты Х1 в программе примут активированное состояние, как будто они являются контактами реле, активированными посредством подачи напряжения катушке реле, названной Х1. В этом случае открытый контакт Х1 будет «закрыт» и отправит сигнал к катушке Y1. Когда катушка Y1 будет находиться под напряжением, выход Y1 осветится лампочкой, подключенной к нему.

Следует понимать, что контакт Х1 и катушка Y1 соединены с помощью проводов, а «сигнал», появляющийся на мониторе компьютера, виртуальный. Они не существуют как реальные электрические компоненты. Они присутствуют только в компьютерной программе - часть программного обеспечения - и всего лишь напоминают то, что происходит в схеме реле.

Не менее важно понять, что компьютер, используемый для написания и редактирования программы, не нужен для дальнейшего использования ПЛК. После того, как программа была загружена в программируемый контроллер, компьютер можно отключить, и ПЛК самостоятельно будет выполнять программные команды. Мы включаем монитор персонального компьютера в иллюстрации для того, чтобы вы поняли связь между реальными условиями (замыкание переключателя и статусы лампы) и статусы программы (сигналы через виртуальные контакты и виртуальные катушки).

Истинная мощь и универсальность ПЛК раскрывается, когда мы хотим изменить поведение системы управления. Поскольку ПЛК является программируемым устройством, мы можем изменить, команды, которые мы задали, без перенастройки компонентов, подключенных к нему. Предположим, что мы решили функцию «переключатель - лампочка» перепрограммировать наоборот: нажать кнопку, чтобы выключить лампочку, и отпустить ее, чтобы включить.

Решение такой задачи в реальных условиях заключается в том, что выключатель, «открытый» при нормальных условиях, заменяется на «закрытый». Программное ее решение - это изменение программы так, чтобы контакт Х1 при нормальных условиях был «закрыт», а не «открыт».

На следующем изображении вы увидите уже измененную программу, при не активизированном переключателе:

А здесь переключатель активизирован:

Одним из преимуществ реализации логического контроля в программном обеспечении, в отличие от контроля с помощью оборудования, является то, что входные сигналы могут быть использованы такое количество раз, какое потребуется. Например, рассмотрим схему и программу, разработанной для включения лампочки, если хотя бы два из трех переключателей активизированы одновременно:

Чтобы построить аналогичную схему, используя реле, потребуются три реле с двумя открытыми контактами при нормальных условиях, каждый из которых должен быть использован. Однако используя ПЛК, мы можем без добавления дополнительного оборудования запрограммировать столько контактов для каждого «Х» входа, сколько нам хотелось бы (каждый вход и выход должен занимать не больше, чем 1 бит в цифровой памяти ПЛК) и вызывать их столько раз, сколько необходимо.

Кроме того, так как каждый выход ПЛК занимает не более одного бита в его памяти, мы можем вносить контакты в программу, приводя Y выход в не активизированное состояние. Для примера возьмем схему двигателя с системой контроля начала движения и остановки:

Переключатель, подключенный к входу Х1, служит кнопкой «Старт», в то время как переключатель, подключенный к входу Х2 - кнопкой «Стоп». Другой контакт, названный Y1, подобно печати в контакте, позволяет контактору двигателя оставаться под напряжением, даже если отпустить кнопку «Старт». При этом вы можете увидеть, как контакт Х2, «закрытый» при нормальных условиях, появится в цветном блоке, показывая тем самым, что он находится в «закрытом» («электропроводящем») состоянии.

Если нажать кнопку «Старт», то по «закрытому» контакту Х1 пройдет ток ток и он отправит 120 В переменного токак к контактору двигателя. Параллельный контакт Y1 также «закроется», тем самым замкнув цепь:

Если мы теперь нажмем кнопку «Старт», контакт Х1 перейдет в «открытое» состояние, но двигатель будет продолжать работать, потому что замкнутый контакт Y1 все еще будет держать катушку под напряжением:

Чтобы остановить двигатель, нужно быстро нажать кнопку «Стоп», которая сообщит напряжение входу Х1 и «открытому» контакту, что приведет к прекращению подачи напряжения к катушке Y1:

Когда вы нажали кнопку «Стоп», вход Х1 остался без напряжения, вернув тем самым контакт Х1 в его нормальное «закрытое» состояние. Двигатель ни при каких условиях не станет работать снова, пока вы снова не нажмете кнопку «Старт», потому что печать в контакте Y1 была потеряна:

Очень важна отказоустойчивая модель устройств контроля ПЛК, так же, как и в устройствах контроля электромеханического реле. Нужно всегда учитывать влияние ошибочно «открытого» контакта на работу системы. Так, например, в нашем случае, если контакт Х2 будет ошибочно «открыт», то не будет никакой возможности остановить двигатель!

Решением этой проблемы является перепрограммирование контакта Х2 внутри ПЛК и фактическое нажатие кнопки «Стоп»:

Когда кнопка «Стоп» не нажата, вход ПЛК Х2 находится под напряжением, т.е. контакт Х2 «закрыт». Это позволяет двигателю начать работу, когда контакту Х1 сообщается ток, и продолжать работу, когда кнопка «Старт» отпущена. Когда вы нажимаете кнопку «Стоп», контакт Х2 переходит в «открытое» состояние и двигатель прекращает работу. Таким образом, вы можете увидеть, что функциональной разницы между этой и предыдущей моделью нет.

Тем не менее, если входной контакт Х2 был ошибочно «открыт», вход Х2 может быть остановлен нажатием кнопки «Стоп». В результате двигатель немедленно отключается. Эта модель безопаснее, чем предыдущая, где нажатие кнопки «Стоп» сделает невозможным остановку двигателя.

В дополнение к входам (Х) и выходам (Y) в ПЛК есть возможность использовать «внутренние контакты и катушки. Они используются так же, как и промежуточные реле, применяемые в стандартных релейных схемах.

Чтобы понять принцип работы «внутренних» схем и контактов, рассмотрим следующую схему и программу, разработанную по принципу трех входов логической функции AND:

В данной схеме, лампа горит, до тех пора пока какая-либо из кнопок не нажата. Для того чтобы выключить лампу следует нажать все три кнопки:

В этой статье, посвященной программируемым логическим контроллерам, иллюстрирована лишь небольшая выборка их возможностей. Как компьютер ПЛК может выполнять и другие расширенные функции с гораздо большей точностью и надежностью, чем при использовании электромеханических логических устройств. Большинство ПЛК имеют больше шести входов и выходов. Следующая иллюстрация показывает один из ПЛК компании Allen-Bradley:

С модулями, каждый из которых имеет 16 входов и выходов, этот ПЛК имеет возможность управлять десятком устройств. Помещенный в шкаф управления ПЛК занимает мало места (для электромеханических реле, выполняющих те же функции, понадобилось бы гораздо больше свободного пространства).

Одно из преимуществ ПЛК, которое просто не может быть продублировано электромеханическим реле, является удаленный мониторинг и управление через цифровые сети компьютера. Поскольку ПЛК - это ничего больше, чем специализированный цифровой компьютер, он может легко «общаться» с другими компьютерами. Следующая фотография - графическое изображение процесса заполнения жидкостью (насосная станция для муниципальной очистки сточных вод), контролируемого ПЛК. При этом сама станция расположена в нескольких километрах от монитора компьютера.

Перевод с английского - Юлия Сурта.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Виртуальная реальность vs Дополненная реальность Что такое VR и AR Виртуальная реальность vs Дополненная реальность Что такое VR и AR Какой сервис даёт наибольшее бесплатное пространство на облаке Какой сервис даёт наибольшее бесплатное пространство на облаке Лучшая программа для обновления драйверов Лучшая программа для обновления драйверов